Home Rubrics of the Journal Author Index Index ompany directory Article Index
 
The Arctic: ecology and economy
ISSN 2223-4594
RuEn
Advanced
Search
ABOUT|EDITORIAL|INFO|ARCHIVE|FOR AUTHORS|SUBSCRIBE|CONTACTS
Home Archive of journals Issue 2(26) 2017 Assessment of climatic changes in the Arctic in the 21st century based on the combined forecast

ASSESSMENT OF CLIMATIC CHANGES IN THE ARCTIC IN THE 21ST CENTURY BASED ON THE COMBINED FORECAST

JOURNAL: 2017, 2(26), p. 35-52

RUBRIC: Research activities in the Arctic

AUTHORS: Vyruchalkina T.Y., Gusev A.V., Diansky N.A., Panin G.N., Solomonova I.V.

ORGANIZATIONS: Water Problems Institute of RAS, Lomonosov Moscow State University, Institute of Numerical Mathematics of RAS

DOI: 10.25283/2223-4594-2017-2-35-52

UDC: 551.465

The article was received on: 20.10.2016

Keywords: Atlantic, climate changes, climate oscillations (fluctuations), ice, greenhouse effect, forecast, Northern Sea Route

Bibliographic description: Vyruchalkina T.Y., Gusev A.V., Diansky N.A., Panin G.N., Solomonova I.V. Assessment of climatic changes in the Arctic in the 21st century based on the combined forecast. The Arctic: ecology and economy, 2017, no. 2(26), pp. 35-52. DOI:10.25283/2223-4594-2017-2-35-52. (In Russian).


ANNOTATION:

The investigation is made of interconnections amongst climatic processes in the North Atlantic and Arctic. It is shown that ice melting in the Arctic in 70’s-90’s of the 20th century is connected with climate variability in the North Atlantic well presented in the indexes of multidecadal oscillation and intensity of Atlantic meridional overturning circulation. As well, the latter reflects climatic changes in the heat and fresh water fluxes from the North Atlantic surface to the mid-latitude atmosphere. We suppose the physicostatistical scenario of climate change (the combined scenario) based on composition of the so-called “greenhouse” (external forcing) and “cyclic” (internal variability of climatic system) effects. The numerical simulations were performed with the ocean general circulation model for retrospective and prognostic reconstruction of thermohaline circulation and sea ice in the North Atlantic and Arctic Oceans. Analysis of the simulation results and investigation of their cyclic properties let us find a new approach to description of climatic variability of the Arctic and Northern sea route. This approach lets one describe temperature growth concerned with both greenhouse gas emission and climate variability (particularly, the observed cooling in 1950-1970 years). The proposed combined scenario of the climatic change presents the possible cooling in the Arctic and the corresponding decrease of the shipping season in the Northern sea route for the next 10-20 years. Overall, the aim of the research is to estimate how much the North Atlantic variability influences Eurasia climate variations, in order to allow for them by the following forecasting.


Reference:
  1. Alekseyev G. V. Proyavleniye i usileniye globalnogo potepleniya v Arktike. [Development and amplification of global warming in the Arctic]. Fundam. i prikladnaya klimatologiya, 2015, no. 1, pp. 11—26. (In Russian).
  2. Byshev V. I., Neyman V. G., Romanov Yu. A., Serykh  I. V. O globalnom kharaktere yavleniya El-Nino v klimaticheskoy sisteme zemli. [On Planetary Nature of El Niño Events in the Earth’s Climatic System]. Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, vol. 8, no. 4, pp. 200—208. (In Russian).
  3. Volodin E. M., Galin V. Ya., Gritsun A. S. i dr. Matematicheskoye modelirovaniye Zemnoy sistemy. [Mathematical Modeling of the Earth System]. Pod red. N. G. Yakovleva. M.: MAKS Press, 2016. 328 p. (In Russian).
  4. Volodin E. M., Dianskiy N. A., Gusev A. V. Vosproizvedeniye sovremennogo klimata s pomoshchyu sovmestnoy modeli obshchey tsirkulyatsii atmosfery i okeana INMCM 4.0. [Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations]. Izv. RAN. Fizika atmosfery i okeana, 2010, vol. 46, no. 4, pp. 448—466. (In Russian).
  5. Volodin E. M., Dianskiy N. A., Gusev A. V. Vosproizvedeniye i prognoz klimaticheskikh izmeneniy v XIX—XXI vekakh s pomoshchyu modeli zemnoy klimaticheskoy sistemy IVM RAN. [Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system]. Izv. RAN. Fizika atmosfery i okeana. 2013, vol. 49, no. 4, pp. 379—400. (In Russian).
  6. Vyruchalkina T. Yu., Filatov N. N., Dianskiy N. A., Gusev A. V. O prognoze mnogoletnikh izmeneniy urovnya krupnykh ozer. [On forecasting long-term variations of water level in large lakes]. Trudy Karelskogo nauchnogo tsentra RAN, 2016, no. 9, pp. 3—16. (In Russian).
  7. Gruza G. V., Rankova E. Ya., Rocheva E. V. Izmeneniya klimata na territorii Rossii: temperatura vozdukha i atmosfernyye osadki. [Climate change at Russian territory: air temperature and atmospheric precipitation]. Izmeneniye okruzhayushchey sredy i klimata. prirodnyye i svyazannyye s nimi tekhnogennyye katastrofy. M., 2008, vol. 6, pp. 11—23. (In Russian).
  8. Gusev A. V., Dianskiy N. A. Vosproizvedeniye tsirkulyatsii Mirovogo okeana i eye klimaticheskoy izmenchivosti v 1948—2007 gg. s pomoshchyu modeli INMOM. [Numerical simulation of the world ocean circulation and its climatic variability for 1948—2007 using the INMOM]. Izv. RAN. Fizika atmosfery i okeana, 2014, vol. 50, no. 1, pp. 3—15. (In Russian).
  9. Dianskiy N. A. Modelirovaniye tsirkulyatsii okeana i issledovaniye ego reaktsii na korotkoperiodnyye i dolgoperiodnyye atmosfernyye vozdeystviya. [Modelling of ocean circulation and its response to short- and long-range atmospheric forcing]. M., Fizmatlit, 2013, 272 p. (In Russian).
  10. Dianskiy N. A., Gusev A. V. Modelirovaniye protsessa izmeneniya klimata i sovremennogo zamedleniya globalnogo potepleniya s pomoshchyu modeli INMOM. [Simulation of the climate change process and the present global warming deceleration with INMOM]. Fundam. i prikladnaya klimatologiya, 2015, no. 1, pp. 96—118. (In Russian).
  11. Kattsov V. M., Porfiryev B. N. Klimaticheskiye izmeneniya v Arktike: posledstviya dlya okruzhayushchey sredy i ekonomiki. [Climate Changes in the Arctic: Impact on Environment and Economy]. Arktika: ekologiya i ekonomika, 2012, no. 2 (6), pp. 66—79. (In Russian).
  12. Klyashtorin L. B., Lyubushin A. A. Tsiklicheskiye izmeneniya klimata i ryboproduktivnosti. [Cyclic climate changes and fish productivity]. M., Izd-vo VNIRO, 2005, 258 . (In Russian).
  13. Mokhov I. I. Sovremennyye izmeneniya klimata v Arktike. [Contemporary climate changes in the Arctic]. Vestn. RAN, 2015, vol. 85, no. 5—6, pp. 478—484. (In Russian).
  14. Mokhov I. I., Semenov V. A., Khon V. Ch. i dr. Svyaz anomaliy klimata Evrazii i Severnoy Atlantiki s estestvennymi variatsiyami Atlanticheskoy termokhalinnoy tsirkulyatsii po dolgoperiodnym modelnym raschetam. [Connection between Eurasian and North Atlantic climate anomalies and natural variations in the Atlantic thermohaline circulation based on long-term model calculations]. Dokl. RAN. 2008, vol. 419, no. 5, pp. 687—690. (In Russian).
  15. Mokhov I. I., Khon V. Ch. Prodolzhitelnost navigatsionnogo perioda i eye izmeneniya dlya Severnogo morskogo puti: modelnyye otsenki. [The duration of the navigation period and changes for the Northern Sea Route: model estimates]. Arktika: ekologiya i ekonomika, 2015, no. 2 (18), pp. 88—95. (In Russian).
  16. Mokhov I. I., Khon V. Ch., Prokofyeva M. A. Novyye modelnyye otsenki izmeneniy prodolzhitelnosti navigatsionnogo perioda dlya Severnogo morskogo puti v XXI veke. [New model estimates of changes in the duration of the navigation period for the Northern sea route in the 21st century]. Dokl. RAN, 2016, vol. 468, no. 6, pp. 699—704. (In Russian).
  17. Panin G. N. Ob izmeneniyakh klimata v polyarnykh zonakh Zemli v XX i XXI stoletiyakh. [On climate changes in polar zones of the earth in the twentieth and twenty-first centuries]. Dokl. Akad. nauk, 2009, vol. 427, pp. 397—402. (In Russian).
  18. Panin G. N., Vyruchalkina T. Yu., Solomonova I. V. Variatsii klimata Severnoy Evrazii v posledney chetverti KhKh veka. [Variations of climate of Northern Eurasia in the last quarter of the 20th century]. Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem. M., 2011, pp. 99—115. (In Russian).
  19. Panin G. N., Vyruchalkina T. Yu., Solomonova I. V. Klimaticheskiye izmeneniya v Arktike. Severnoy Atlantike. rayone Kaspiya i ikh vzaimosvyaz. [Climatic changes in the Arctic, North Atlantic, the Caspian sea region, and their relationships]. Fundam. i prikladnaya klimatologiya, 2015, no. 1. pp. 183—210. (In Russian).
  20. Panin G. N., Dianskiy N. A. Klimaticheskiye izmeneniya v Arktike. Severnoy Atlantike i Severnyy morskoy put. [Climatic variations in the Arctic, North Atlantic, and the Northern sea route]. Dokl. Akad. nauk, 2015, vol. 462, no. 2, pp. 217—222. (In Russian).
  21. Panin G. N., Solomonova I. V., Vyruchalkina T. Yu. Klimaticheskiye tendentsii v srednikh i vysokikh shirotakh Severnogo polushariya. [Climatic trends in the middle and high latitudes of the Northern Hemisphere]. Vod. resursy, 2009, vol. 36, no. 6, pp. 743—756. (In Russian).
  22. Popova V. V., Shmakin A. B. Dinamika klimaticheskikh ekstremumov v Severnoy Evrazii v kontse KhKh veka. [Dynamics of climate extremes in Northern Eurasia in the late 20th century]. Izv. RAN. Fizika atmosfery i okeana, 2006, vol. 42, no. 2, pp. 157—166. (In Russian).
  23. Semenov V. A. Vliyaniye okeanicheskogo pritoka v Barentsevo more na izmenchivost klimata v Arktike. [Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region]. Dokl. RAN, 2008, vol. 418, no. 1, pp. 106—109.
  24. Semenov V. A., Mokhov I. I., Latif M. Vliyaniye temperatury poverkhnosti okeana i granits morskogo lda na izmeneniye regionalnogo klimata v Evrazii za posledniye desyatiletiya. [Influence of the ocean surface temperature and sea ice concentration on regional climate changes in eurasia in recent decades]. Izv. RAN. Fizika atmosfery i okeana, 2012, vol. 48, no. 4, pp. 403—421. (In Russian).
  25. Tolstykh M. A., Dianskiy N. A., Gusev A. V., Kiktev D. B. Vosproizvedeniye sezonnykh anomaliy atmosfernoy tsirkulyatsii pri pomoshchi sovmestnoy modeli atmosfery i okeana. [Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model]. Izv. RAN. Fizika atmosfery i okeana, 2014, vol. 50, no. 2, pp. 131—142. (In Russian).
  26. Bekryaev R. V., Polyakov I. V., Alexeev V. A. Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming. J. Climate, 2010, vol. 23, pp. 3888—3906.
  27. Boykoff M. T. Media discourse on the climate slowdown. Nature Climate Change, 2010, vol. 4, pp. 156—158.
  28. Chen X., Tung K. K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 2014, vol. 345 (6199), pp. 897—903.
  29. Climatic Research Unit. Available at: http://www.cru.uea.ac.uk.
  30. Coupled Model Intercomparison Project. Available at: http://cmip-pcmdi.llnl.gov.
  31. Cowtan K., Hausfather Z., Hawkins E. et al. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophysical Research Letters, 2015, vol. 42, no. 15, pp. 6526—6534.
  32. Danabasoglu G., Yeager S. G., Kim W. M. et al. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II) — Pt. I: Mean states. Ocean Modelling, 2014, vol. 73, pp. 76—107.
  33. Danabasoglu G., Yeager S. G., Kim W. M. et al. North Atlantic Simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Pt. II: Inter-Annual to Decadal Variability. Ocean Modelling, 2016, vol. 97, pp. 65—90.
  34. Delworth T. L., Mann M. E. Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dynamics, 2000, no. 16, pp. 661—676.
  35. Downes S. M., Farneti R., Uotila P. et al. An assessment of Southern Ocean water masses and sea ice during 1988—2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, vol. 94, pp. 67—94.
  36. Dufour A., Zolina O., Gulev S. K. Atmospheric moisture transport to the Arctic: assessment of reanalyses and analysis of transport components. J. of Climate, 2016, vol. 29, pp. 5061—5081.
  37. England M. H., McGregor S., Spence P. et al. Recent intensification of wind-driven circulation in the pacific and the ongoing warming hiatus. Nature Climate Change, 2014, vol. 4, pp. 222—227.
  38. Farneti R., Downes S. M., Griffies S. M. et al. An assessment of Antarctic Circumpolar Current and Southern Ocean Meridional Overturning Circulation during 1958—2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, vol. 93, pp. 84—120.
  39. Fyfe J. C., Gillett N. P., Zwiers F. W. Overestimated global warming over the past 20 years. Nature Climate Change, 2013, vol. 3, pp. 767—769.
  40. Geophysical Fluid Dynamics Laboratory. Available at: http://data1.gfdl.noaa.gov/nomads/forms/core/COREv2.html.
  41. GISTEMP Team, 2017: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Dataset accessed 20YY-MM-DD. Available at: https://data.giss.nasa.gov/gistemp/.
  42. Guemas V., Doblas-Reyes F. J., Andreu-Burillo I., Asif M. Retrospective prediction of the global warming slowdown in the past decade. Nature Climate Change, 2013, vol. 3, pp. 649—653.
  43. Gulev S. K., Belyaev K. P. Probability distribution characteristics for surface air-sea turbulent heat fluxes over the global ocean. J. of Climate, 2012, vol. 25, pp. 184—206.
  44. Gulev S. K., Latif M., Keenlyside N. et al. North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature, 2013, vol. 499, pp. 464—467.
  45. Gulev S. K., Latif M. Ocean science: The origins of a climate oscillation. Nature, 2015, vol. 521, pp. 428—430.
  46. Hawkins E., Edwards T., McNeall D. Pause for thought. Nature Climate Change, 2014, vol. 4, pp. 154—156.
  47. IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, S. Solomon, D. Qin, M. Manning et al (eds.)]. Cambridge; New York: Cambridge Univ. Press, 2007.
  48. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, T. F. Stocker, D. Qin, G. K. Plattner et al (eds.)]. Cambridge; New York: Cambridge Univ. Press, 2013, 1535 p.
  49. Johannessen O. M., Bengtsson L., Miles M. W. et al. Arctic climate change: observed and modeled temperature and sea-ice variability. Tellus A: Dynamic Meteorology and Oceanography, 2004, vol. 56, pp. 328—341.
  50. Johnson ., Proshutinsky A., Aksenov Ye. et al. Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models. J. Geophys. Res, 2012, vol. 117, C00D13.
  51. Karl T. R., Arguez A., Huang B. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science, 2015, vol. 348 (6242), pp. 1469—1472.
  52. Kosaka Y., Xie S. P. Recent global-warming hiatus tied to equatorial pacific surface cooling. Nature, 2013, vol. 501, pp. 403—407.
  53. Large W., Yeager S. The global climatology of an interannually varying air–sea flux data set. Clim Dyn, 2009, vol. 33, pp. 341—364.
  54. Lenton T. M., Held H., Kriegler E. et al. Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences of the United States of America, 2008, vol. 105 (6), pp. 1786—1793.
  55. McCarthy G. D., Haigh I. D., Hirschi J. J.-M. et al. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature, 2015, vol. 521 (7553), pp. 508—510.
  56. Meehl G. A., Arblaster J. M., Fasullo J. T. et al. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate Change, 2011, vol. 1, pp. 360—364.
  57. National Snow and Ice Data Center FTP Archives. URL: ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/.
  58. Otto A., Otto F. E. L., Boucher O., Church J. et al. Energy budget constraints on climate response. Nature Geoscience, 2013, vol. 6, pp. 415—416.
  59. Santer B. D., Bonfils C., Painter J. F. et al. volcanic contribution to decadal changes in tropospheric temperature. Nature Geoscience, 2014, vol. 7, pp. 185—189.
  60. Schlesinger M. E., Ramankutty N. An oscillation in the global climate system of period 65-70 years. Nature, 1994, vol. 367, pp. 723—726.
  61. Semenov V. A., Latif M., Dommenget D. et al. The Impact of North Atlantic-Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature. J.  Climate, 2010, vol. 23, pp. 5668—5677.
  62. Smith D. Oceanography: has global warming stalled?. Nature Climate Change, 2013, vol. 3, pp. 618—619.
  63. Trenberth K. E., Fasullo J. T. An apparent hiatus in global warming?. Earth’s Future, 2013, vol. 1, pp. 19—32.
  64. Suo L, Ottera O. H., Bentsen M. et al. External forcing of the early 20th century Arctic warming. Tellus, 2013, vol. 65, pp. 20578—20591.
  65. Available at: http://woodfortrees.org.

Download »


© 2011-2019 The Arctic: ecology and economy
DOI 10.25283/2223-4594